An Efficient Weighted Voting Protocol with Secret Weights

Toru Nakanishi, Shinji Nakatake, Nobuo Funabiki and Yuji Sugiyama

Dept. of Communication Network Engineering, Okayama Univ., Japan
What’s a weighted voting?

- Conventional voting:
 All votes are tallied equally.

- Weighted voting:
 Votes are tallied in proportion to their weights.

 Weight 10
 Voter A → yes → 10 “yes”

 Weight 20
 Voter B → no → 20 “no”

E.g., weighted voting is in demand for stockholders’ meeting
Model

- Participants:
 - Voter V_i with weight w_i (1 ≤ i ≤ N)
 - Administration server A
 - ensures w_i of V_i
 - does not leak w_i
 - Tallying servers T_j (1 ≤ j ≤ L)
 - For threshold K, K or more T_j do not collude.
Model (Cont.)

- **Target:** “yes/no” voting
 - Voter V_i casts $v_i = 1$ (“yes”) or -1 (“no”).
 - Voting result:
 $$D = \sum v_i w_i$$
 (Difference between #“yes” and #“no” including the weights)
Requirements

- **Votes secrecy:**
 Vote \(v_i \) of each \(V_i \) is kept secret.

- **Verifiability:**
 The voting result can be verifiable by anyone.

- **Weights secrecy:**
 Weight \(w_i \) of each \(V_i \) is kept secret.

 Weight is also privacy information.
 (In stockholder’s meeting, weight is the number of stocks of user.)
Previous work [6]

- Uses homomorphic public-key encryption E, such as ElGamal, by T_j's key.
 - $E(m_1) \times E(m_2) = E(m_1 + m_2)$
- Vote: $E(v_i) = E(1)$ or $E(-1)$
- Result:
 $$E(v_1)^{w_1} \times \cdots \times E(v_N)^{w_N}$$
 $$= E(w_1v_1) \times \cdots \times E(w_Nv_N)$$
 $$= E(w_1v_1 + \cdots + w_Nv_N)$$

T_j s decrypt $D = w_1v_1 + \cdots + w_Nv_N$

Private weighting in [6]

- For weights secrecy, $E(v_i)^w_i$ from $E(v_i)$ is computed by server A using Mix protocol.

\[\text{Shuffle} \]

$E(v_1)$ \rightarrow $E(v_?)^w_?$ \rightarrow $E(v_?)^w_?$

$E(v_2)$ \rightarrow $E(v_?)^w_?$ \rightarrow $E(v_?)^w_?$

\vdots \quad \vdots \quad \vdots

$E(v_N)$ \rightarrow $E(v_?)^w_?$ \rightarrow $E(v_?)^w_?$

vi and wi are unlinkable
Problem of [6]

- After all votes are cast, the heavy Mix protocol are performed.
 - Mix protocol needs $O(N)$ exponentiations.
 - Even the most fast Mix protocol needs $20N$ exps.
 - e.g., for $N=1,000$, it means 20,000 exps.

Contributions

- A more efficient weighted voting protocol
 - Tallying cost is reduced.
 - (O(1) exps. only)

Mix protocol is excluded.
Idea

- V_i casts $E(w_i v_i) = E(w_i)$ or $E(-w_i)$.
 - Mix protocol is not needed.

How to prove that $E(w_i v_i)$ is correct?

- Using certificate of w_i issued from server A, V_i can prove that $E(w_i v_i)$ is correct.

w_i ensured by certificate should be proved in zero-knowledge
Used tool: Camenisch-Lysyanskaya signature scheme[1]

- Provably secure against adaptive attacker without random oracle
- The knowledge of the signature and messages can be proved in zero-knowledge.
 i.e., ZPK of \((m, s) \) for \(s=\text{Sig}(m) \)
 (ZPK: zero-knowledge proof of knowledge)

Our protocol: Certification issue

- In advance, V_i is issued a certificate of w_i from server A.
 - The certificate: Camenisch-Lysyanskaya signature $\text{Sig}(w_i)$.

```
  V_i  Sig(w_i)  A
```
Our protocol: Casting

During a voting, V_i casts $E(w_iv_i)$, i.e., $E(w_i)$ or $E(-w_i)$, to T_is, together with the correctness proof.

ZPK of (w_i, s_i) s.t.
- $[e = E(w_i)$ and $s_i = \text{Sig}(w_i)]$
- or $[e = E(-w_i)$ and $s_i = \text{Sig}(w_i)]$

- Encryption and ZPK □ Votes secrecy, Weights secrecy
- Correctness Proof of ZPK □ Verifiability
Our protocol: Tallying

- T_j's cooperatively decrypt

\[E(w_1v_1) \times \cdots \times E(w_Nv_N) \]
\[= E(w_1v_1 + \cdots + w_Nv_N) \]
\[= E(D) \]

Exps are needed only in one threshold decryption.
(no mix protocol)

Tallying time is largely reduced!
Conclusion

- A more efficient weighted voting protocol
 - Tallying cost is reduced.
 (O(1) exps. only)

Future work

- Extension to voting for multiple candidates.